X-ray luminescence computed tomography using a focused x-ray beam.

نویسندگان

  • Wei Zhang
  • Michael C Lun
  • Alex Anh-Tu Nguyen
  • Changqing Li
چکیده

Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cone Beam X-Ray Luminescence Tomography Imaging Based on KA-FEM Method for Small Animals

Cone beam X-ray luminescence tomography can realize fast X-ray luminescence tomography imaging with relatively low scanning time compared with narrow beam X-ray luminescence tomography. However, cone beam X-ray luminescence tomography suffers from an ill-posed reconstruction problem. First, the feasibility of experiments with different penetration and multispectra in small animal has been teste...

متن کامل

Impact of Photon Spectra on the Sensitivity of Polymer Gel Dosimetry by X-Ray Computed Tomography

Introduction: The purpose of the current study was to investigate the effect of X-ray spectra on the sensitivity of a polymer gel dosimeter imaged with a conventional computed tomography (CT) scanner. Material and Methods: The whole process of CT imaging of an irradiated polymer gel was simulated by MCNPX Monte Carlo (MC) code. The imaging of polyacrylamide gel was accomplished by means of a co...

متن کامل

Assessment of X-Ray Crosstalk in a Computed Tomography Scanner with Small Detector Elements Using Monte Carlo Method

Introduction: Crosstalk is a leakage of X-ray or light produced in a matrix of X-ray detectors or array of photodiodes in one element to other elements affecting on image contrast and spatial resolution. In this study, we assessed X-ray crosstalk in a computed tomography (CT) scanner with small detector elements to estimate the effect of various parameters such as X-ray tube voltage, detector e...

متن کامل

Collimated superfine x-ray beam based x-ray luminescence computed tomography.

X-ray luminescence computed tomography (XLCT) is a hybrid imaging modality with the potential to achieve a spatial resolution up to several hundred micrometers for targets embedded in turbid media with a depth larger than several millimeters. In this paper, we report a high spatial resolution XLCT imaging system with a collimated superfine x-ray beam in imaging the deeply embedded targets. A co...

متن کامل

Development of a focused-X-ray luminescence tomography (FXLT) system

Biophotonics is an active research area in molecular imaging, genetic diagnosis and prognosis, with direct applicability in precision medicine. However, long-standing challenges of biophotonics are well known due to low signal-to-noise ratio and poor image quality, mainly due to strong optical scattering especially in deep tissues. Recently, X-ray luminescence computed tomography (XLCT) has eme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 22 11  شماره 

صفحات  -

تاریخ انتشار 2017